MULTILEVEL LINC TRANSMITTER

Inventors: Yuen-Jyue Chen, Taipei (TW);
Kai-Yuan Jheng, Taoyuan County
(TW); An-Yeu Wu, Taipei (TW);
Hen-Wai Tsoo, Taipei (TW); Posen
Tseng, Hsinchu County (TW)

Assignee: Mediatek Inc., Hsin-Chu (TW)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 510 days.

Appl. No.: 11/757,479
Filed: Jun. 4, 2007

Prior Publication Data

Related U.S. Application Data
Provisional application No. 60/807,952, filed on Jul. 21, 2006.

Int. Cl.
H04L 25/49 (2006.01)
H04B 1/04 (2006.01)

U.S. Cl. 375/296; 455/114.3
375/285; 455/63.1, 114.2, 114.3, 127.2

Field of Classification Search
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
3,927,379 A 12/1975 Cox et al.

ABSTRACT
A multilevel LINC transmitter. The multilevel LINC transmitter comprises a multilevel signal component separator, a phase modulator block, and an RF block. The multilevel signal component separator comprises a multilevel scaler and converts a base band signal to constant envelope signals. The phase modulator block is coupled to the multilevel signal component separator. The RF block comprises a plurality of power amplifiers coupled to the phase modulator block and the multilevel scaler and a power combiner coupled to the power amplifiers.

10 Claims, 10 Drawing Sheets
OTHER PUBLICATIONS

* cited by examiner
FIG. 1
FIG. 2B
FIG. 5A

FIG. 5B
FIG. 6

FIG. 7
FIG. 9C
MULTILEVEL LINC TRANSMITTER

This application claims the benefit of U.S. Provisional Application No. 60/807,952, filed on Jul. 21, 2007.

BACKGROUND OF THE INVENTION

1. Field of the Invention
 The invention relates to a LINC transmitter and, in particular, to a multilevel LINC transmitter.

2. Description of the Related Art
 To prolong battery life of mobile handset devices, demands on power efficiency of wireless mobile communication systems have become more important. In general, the most power hungry device in a transceiver is a power amplifier which has nonlinear characteristics. In addition, modulation of non-constant-envelope signals demands high linearity of a power amplifier. As a result, a trade-off between linearity and power efficiency in a wireless transmitter is necessary.

 Various PA linearization techniques have been adopted to improve linearity and power efficiency of wireless transmitters. Linear amplification with nonlinear components (LINC) is a transmitter architecture which increases linearity and power efficiency of a wireless transmitter. Due to accurate signal processing and insensitivity to process variation, a digital LINC architecture is more suitable for modern process technologies.

 FIG. 1 is a block diagram of a conventional LINC architecture. As shown in FIG. 1, an input signal S(t) of the LINC 100 is a varying envelope signal. A signal separator 110 divides the input signal S(t) into two constant-envelope signals S1 and S2. Subsequently, two power amplifiers PA1 and PA2 respectively amplify the constant-envelope signals S1 and S2. Since a nonlinear power amplifier can amplify a constant-envelope signal linearly, two power efficient nonlinear power amplifiers are used in such architecture. Finally, the two amplified signals are combined by a power combiner 120. Thus, a linearly amplified signal is obtained at an output of the power combiner 120.

 The input of the LINC system is a varying-envelope signal S(t),

 \[S(t) = A(t) \cdot e^{j\phi(t)} \]

 wherein A(t) denotes the signal envelope and \(\phi(t) \) is signal phase. In the phasor diagram shown in FIG. 2A, the varying-envelope signal S(t) is split into a set of constant-envelope signals, \(S_1(t) \) and \(S_2(t) \),

 \[S(t) = \frac{1}{2} \left[S_1(t) + S_2(t) \right] \]

 \[= \frac{1}{2} r_0 [e^{j\theta(t)} + e^{-j\theta(t)}] \]

 And an out-phasing angle \(\theta(t) \) is expressed as

 \[\theta(t) = \cos^{-1} \left(\frac{A(t)}{r_0} \right) \]

 Both \(S_1(t) \) and \(S_2(t) \) are on a circle with a radius \(r_0 \). In a conventional LINC transmitter, \(r_0 \) is a constant scale factor predefined by a system designer. Because input range of an inverse cosine function is \([-1, 1]\), selection of \(r_0 \) needs to satisfy the formula:

\[r_0 = \max(|A(t)|) \]

2

FIG. 2B illustrates the signals after amplification. The amplified signals are expressed as \(G \cdot S_1(t) \) and \(G \cdot S_2(t) \), where \(G \) is voltage gain of the power amplifiers. The two amplified signals are combined by a power combiner to obtain a signal \(V \cdot G \cdot S(t) \) which is a linear amplification of the input signal \(S(t) \). Because of the out-phasing technique, LINC achieves linear amplification with two power efficient nonlinear power amplifiers.

BRIEF SUMMARY OF THE INVENTION

An embodiment of a multilevel LINC transmitter comprises a multilevel signal component separator, a phase modulator block, and an RF block. The multilevel signal component separator comprises a multilevel scaler and converts an input signal to phase signals. The phase modulator block is coupled to the multilevel signal component separator. The RF block comprises a plurality of power amplifiers coupled to the phase modulator block and the multilevel scaler and a power combiner coupled to the power amplifiers.

The invention provides a multilevel LINC transmitter with a multilevel scaler in a multilevel signal component separator thereof. The multilevel scaler dynamically adapts a scale factor according to the input signal and therefore the out-phasing angle is adjustable. As a result, high power efficiency and linearity are achieved.

A detailed description is given in the following embodiments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be more fully understood by reading the subsequent detailed description and examples with reference made to the accompanying drawings, wherein:

FIG. 1 is a block diagram of a conventional LINC architecture;

FIGS. 2A and 2B are respectively phasor diagrams of a signal and components thereof before and after amplification;

FIG. 3 is a block diagram of a multilevel LINC transmitter according to an embodiment of the invention;

FIGS. 4A and 4B are respectively phasor diagrams showing out-phasing angles of single-level and multilevel scaling techniques;

FIGS. 5A and 5B are respectively a detailed phasor diagram and a generalized phasor diagram showing out-phasing angles of multilevel scaling techniques;

FIG. 6 is a schematic diagram showing signal envelope distribution in WCDMA;

FIG. 7 is a block diagram of a multilevel scaler 313 in FIG. 3;

FIG. 8 is a block diagram of the envelope modulator 340 in FIG. 3;

FIG. 9A is a schematic diagram of VDD-to-PM distortion which degrades linearity;

FIG. 9B is a schematic diagram showing characteristics of the distortion compensator 350 in FIG. 3; and;

FIG. 9C is a schematic diagram showing constant phase of the output signal of the multilevel LINC transmitter with different PA supply voltages.

DETAILED DESCRIPTION OF THE INVENTION

The following description is of the best-considered mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the
invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.

FIG. 3 is a block diagram of a multilevel LINC transmitter according to an embodiment of the invention. The multilevel LINC transmitter 300 comprises a multilevel signal component separator 310, a phase modulator block 320, and an RF block 330. The multilevel signal component separator 310 comprises a polar converter 311, a multilevel scaler 313 coupled to the polar converter 311, an inverse cosine module 315 coupled to the multilevel scaler 313, and a phase calculator 317 coupled to the polar converter 311 and the inverse cosine module 315. The polar converter 311 receives and converts the input signal S(t) to polar form. Then, an envelope signal A(t) is scaled by a multilevel scaler 313 and the inverse cosine module 315 generates an output angle $\theta(t)$. Therefore, the phase calculator 317 generates phase signals $\phi(t)=\theta(t)$ and $\phi(t)=\theta(t)$. In other words, the multilevel signal component separator 310 converts the input signal S(t) into phase signals $\phi(t)=\theta(t)$ and $\phi(t)=\theta(t)$. The phase modulator block 320 comprises two phase modulators 321 coupled to the multilevel signal component separator 310. The RF block 330 comprises a plurality of power amplifiers 331 coupled to the phase modulator block 320 and the multilevel scaler 313 and a power combiner 333 coupled to the power amplifiers 331.

In an embodiment of the invention, a Wilkinson power combiner is adopted in a LINC transmitter, however, scope of the invention is not limited thereto. Other hybrid couplers, lossless Wilkinson power combiner, Chireix-outphasing combiner, or the like are also applicable to the invention. For a Wilkinson power combiner, efficiency $\eta(t)$ of thereof is defined as,

$$\eta(t) = \cos^2 \theta(t)$$

It is noted that $\eta(t)$ is high when $\theta(t)$ is low. When the out-phasing angle $\theta(t)$ is substituted by the formula disclosed previously, the efficiency $\eta(t)$ is expressed as,

$$\theta(t) = \cos^{-1} \left(\frac{A(t)}{r_0} \right)$$

As a result, to utilize high power efficiency of a Wilkinson power combiner, the value of r_0 must be close to and not less than the maximum of $A(t)$.

Rather than the conventional scaling technique using single-level r_0, the multilevel scaler 313 in FIG. 3 reduces $\theta(t)$ such that high Wilkinson power combiner efficiency is achieved. A 2-level design example is illustrated in FIG. 4B. When $A(t)$ is much smaller than r_0, the multilevel scaler adapts scale factor from r_0 to r_0, and out-phasing angle, $\theta(t)$ in FIG. 4B is much smaller than the conventional out-phasing angle $\theta(t)$ in FIG. 4A. Thus, the multilevel scaling technique enhances Wilkinson combiner efficiency. The multilevel scaling technique can be generalized to N levels in FIG. 5A, and R_N is a general expression for multilevel scaling as shown in FIG. 5B, where $R_N = r_{N-1}$ for $r_{N-1} < A(t) \leq r_N$, $k=0, 1, \ldots, N-1$, where $r_0 = \max(A(t))$. The definition of out-phasing angle $\theta(t)$ in multilevel scaling technique is modified as

$$\theta(t) = \cos^{-1} \left(\frac{A(t)}{R_N} \right)$$

To maximize the Wilkinson power combiner efficiency, optimal scale factors of each level r_k need to be determined in advance. Since multilevel scale factors are used in the LINC transmitter, Wilkinson power combiner efficiency formula is modified as

$$\eta(t) = \frac{A(t)^2}{R_N^2}.$$
adjustment of the supply voltage of two RF power amplifiers, introduces another distortion, VDD-to-PM distortion, a distortion compensator is incorporated in the multilevel LINC transmitter to compensate VDD-to-PM distortion. FIG. 9A is a schematic diagram of VDD-to-PM distortion which degrades linearity. To correct VDD-to-PM distortion, a digital distortion compensator with characteristics shown in FIG. 9B is incorporated in the multilevel LINC transmitter. Thus, phase of the output signal remains constant even with different PA supply voltages, as shown in FIG. 9C.

Moreover, the multilevel LINC transmitter according to an embodiment of the invention further comprises a temperature sensor. Since temperature variation may result in different VDD-to-PM distortion, a temperature sensor is incorporated in the the multilevel LINC transmitter such that VDD-to-PM distortion is compensated.

The invention provides a multilevel LINC transmitter with a multilevel scaler in a multilevel signal component separator thereof. The multilevel scaler dynamically adapts a scale factor according to the input signal and therefore the outphasing angle is adjustable. As a result, high power efficiency and linearity are achieved.

While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

What is claimed is:
1. A multilevel LINC transmitter, comprising:
a multilevel signal component separator comprising a multilevel scaler and converting an input signal to phase signals;
a phase modulator block coupled to the multilevel signal component separator; and
an RF block comprising a plurality of power amplifiers coupled to the phase modulator block and the multilevel scaler and a power combiner coupled to the power amplifiers.
2. The multilevel LINC transmitter as claimed in claim 1, wherein the multilevel scaler comprises an slicer and a ROM coupled to the slicer.
3. The multilevel LINC transmitter as claimed in claim 2, wherein the slicer comprises a comparator.
4. The multilevel LINC transmitter as claimed in claim 1, further comprising an envelope modulator coupled to the multilevel scaler and the power amplifiers.
5. The multilevel LINC transmitter as claimed in claim 4, wherein the envelope modulator comprises a digital to analog convertor (DAC) coupled to the multilevel scaler and a low pass filter (LPF) coupled between the DAC and the power amplifiers.
6. The multilevel LINC transmitter as claimed in claim 5, wherein the envelope modulator further comprises a low drop-out (LDO) regulator coupled between the LPF and the power amplifier.
7. The multilevel LINC transmitter as claimed in claim 6, further comprising a delay compensator coupled between the phase modulator block and the RF block.
8. The multilevel LINC transmitter as claimed in claim 4, further comprising a distortion compensator coupled between the multilevel signal component separator and the envelope modulator.
9. The multilevel LINC transmitter as claimed in claim 8, further comprising a sensor coupled to the distortion compensator.
10. The multilevel LINC transmitter as claimed in claim 1, wherein the power combiner is a Wilkinson combiner.