Calculating the matrix A_i

Are the pre-coding matrices square?

Calculating the determinants of the L matrices A_i.

Finding a maximum cofactor of the diagonal of each of the L matrices A_i.

Finding the pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices A_i.

Calculating the cofactors of the diagonals of the L matrices A_i.

Finding a maximum cofactor of the diagonal of each of the L matrices A_i.

Finding the pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals and the determinants of the L matrices A_i.

Finding a maximum cofactor of the diagonal of each of the L matrices A_i.

Calculating the maximum cofactors of the diagonals and the determinants of the at least S matrices.

Finding a maximum cofactor of the diagonal of each of the at least S matrices or ratios between the maximum cofactors of the diagonals and the determinants of the at least S matrices.

20 Claims, 8 Drawing Sheets
Start

S400
Calculating the matrix A

S401
Calculating the cofactors of the diagonals of the L matrices A_i - A_l

S402
Are the pre-coding matrices square?

S403
Yes

S404
Calculating the pre-coding matrix corresponding to the maximum of the diagonals of the S matrices A_m - A_s

S405
No

S406
Finding a maximum cofactor of the diagonal of each of the L matrices A_i - A_l

S407
Finding the pre-coding matrix corresponding to the maximum of the diagonals of the S matrices A_m - A_s

S408
End
<table>
<thead>
<tr>
<th>Size of the pre-coding matrix</th>
<th>HF rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x4</td>
<td>4</td>
</tr>
<tr>
<td>8x3</td>
<td>3</td>
</tr>
<tr>
<td>8x2</td>
<td>2</td>
</tr>
<tr>
<td>4x3</td>
<td>3</td>
</tr>
<tr>
<td>4x2</td>
<td>2</td>
</tr>
</tbody>
</table>

FIG. 6
Eliminating (L-S) matrices with relatively small diagonal products from the L matrices A_1-A_k to remain S matrices A_1-A_s.

Judging whether the sizes of the S matrices A_1-A_s are greater than 3x3.

- Yes: Performing the QR decomposition to the S matrices A_1-A_s.
- No: Calculating the determinants of the S matrices A_1-A_s.

Calculating the cofactors of the diagonals of the S matrices A_1-A_s.

FIG. 7
Finding a maximum cofactor of the diagonal of each of the S matrices $A_1' - A_S'$

$\text{i=2 and } j=1$

No

$\text{Yes, } c' \times \det(A_j') < c' \times \det(A_i')?$

No

Yes

$i = i$

$i = S$?

No

Yes

Selecting the pre-coding matrix F_j

i=i+1

Finding the pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices $\tilde{A}_1 - \tilde{A}_L$

End

FIG. 8
CODEBOOK SEARCHING APPARATUS AND METHOD THEREOF

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of Taiwan application serial no. 98127024, filed on Aug. 11, 2009. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of specification.

BACKGROUND

1. Technical Field

The present disclosure relates to a receiver of a multiple input multiple output (MIMO) wireless communication system. More particularly, the present disclosure relates to a codebook searching apparatus of a receiver and a method thereof.

2. Description of Related Art

Present communication standards, such as IEEE 802.16m and long term evolution (LTE) all support a closed loop multiple input multiple output (MIMO) wireless communication transmission technique, and an important technique thereof is to implement a pre-coding technique through a codebook. Theoretically, the more the pre-coding members (i.e. pre-coding matrices) are, the more complicated the required operation is. Presently, a plurality of rules can be used to determine whether a pre-coding matrix is suitable.

There are three documents related the codebook searching methods, one is “Proposal for IEEE 802.16m Differential Encoding/Decoding for CL-MIMO Codebook Feedback” published in May 2008 by Nortel, in which a basic concept and idea thereof is concluded according to a document of IEEE C802.16m Contribution with a serial number of IEEE C802.16m/08-347. Moreover, the other two documents are US patents disclosed by Texas Instruments on Dec. 11, 2008, which are respectively “Reduced Search Space Technique for Codeword Selection, US 2008/0304463 A1” and “Low Complexity Pre-coding Matrix Selection, US 2008/0304464 A1”.

These three documents have a common assumption that a wireless channel is slowly changed. Therefore, within a time period, at a certain time point t_0, a full search (or exhaustive search) is performed to all of the codebooks, which is a general operation, and at the next several time points, a small range searching is performed while taking the pre-coding matrix selected at the previous time point as a reference, wherein the small range is a predetermined range. It should be noticed that the whole procedure has to be repeated every a time period T, so as to avoid generating a severe error propagation.

Assuming the codebook has L pre-coding matrices, and each of the pre-coding matrices specifies p−1 closest pre-coding matrices. The method to specify p−1 closest pre-coding matrices is to categorize the matrices according to an inner product of two pre-coding matrices, and the greater the inner product is, the higher the similarity of the two pre-coding matrices is, so that a next search is performed on p pre-coding matrices including the p−1 closest pre-coding matrices and the pre-coding matrix itself. Wherein, the categorization can be performed according to an off-line operation, and after the pre-coding matrices are categorized, a transmitter and a receiver have to store a relation table of the pre-coding matrices, which may occupy extra memories.

Within the time period T, the search can be performed on the categorized pre-coding matrices, and when each integral time T is reached, the conventional full search has to be performed. Therefore, though a required searching range of the aforementioned codebook searching method can be reduced in most of the time, the full search with the highest complexity has to be performed every a time period.

SUMMARY

The present disclosure provides a codebook searching method for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2. First, L matrices are calculated according to the L pre-coding matrices, and the L matrices are inverted mean square error (MSE) matrices of the L pre-coding matrices. Next, when the L pre-coding matrices are square, a first step is executed, and the first step comprises: calculating cofactors of diagonals of the L matrices; finding a maximum cofactor of the diagonal of each of the L matrices; and finding a pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices.

The present disclosure provides a codebook searching method for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2. First, L matrices are calculated according to the L pre-coding matrices, and the L matrices are inverted MSE matrices of the L pre-coding matrices. Next, when the L pre-coding matrices are non-square, one of a first to a fourth steps is selectively executed. Wherein, the first step comprises: calculating determinants of the L matrices; calculating cofactors of diagonals of the L matrices; finding a maximum cofactor of the diagonal of each of the L matrices; and finding a pre-coding matrix corresponding to a minimum one of ratios between the maximum cofactors of the diagonals and the determinants of the L matrices. The second step comprises: calculating the determinants of the L matrices; and obtaining a pre-coding matrix corresponding to the maximum one of the determinants of the L matrices. The third step comprises: calculating diagonal products of the L matrices; eliminating (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1; calculating determinants of the S matrices; calculating cofactors of diagonals of the S matrices; finding a maximum cofactor of the diagonal of each of the S matrices; and finding a pre-coding matrix corresponding to a minimum one of ratios between the maximum cofactors of the diagonals and the determinants of the S matrices. The fourth step comprises: calculating the diagonal products of the L matrices; eliminating (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1; calculating the determinants of the S matrices; and finding a pre-coding matrix corresponding to a maximum one of the determinants of the S matrices.

The present disclosure provides a codebook searching apparatus for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2. The codebook searching apparatus includes a matrix operation unit, a judgment unit, a calculation unit and a decision unit. The matrix operation unit calculates L matrices according to the L pre-coding matrices, wherein the L matrices are inverted MSE matrices of the L pre-coding matrices. The judgment unit judges whether the L pre-coding matrices are square, and is used to control the calculation unit and the decision unit. When the L pre-coding matrices are square, the calculation unit calculates
maximum cofactors of diagonals of the L matrices. When the L pre-coding matrices are non-square, the calculation unit calculates the maximum cofactors of the diagonals and determinants of at least S matrices of the L matrices, wherein L is greater than S. When the L pre-coding matrices are square, the decision unit finds a pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices. When the L pre-coding matrices are non-square, the decision unit finds a pre-coding matrix among at least S matrices corresponding to a minimum one of ratios between the maximum cofactors of the diagonals and their corresponding determinants.

The present disclosure provides a codebook searching apparatus for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2. The codebook searching apparatus includes a matrix operation unit, a judgment unit, a calculation unit and a decision unit. The matrix operation unit calculates L matrices according to the L pre-coding matrices, wherein the L matrices are inverses MSE matrices of the L pre-coding matrices. The judgment unit judges whether the L pre-coding matrices are square, and is used to control the calculation unit and the decision unit. When the L pre-coding matrices are square, the calculation unit calculates maximum cofactors of diagonals of the L matrices. When the L pre-coding matrices are non-square, the calculation unit calculates determinants of at least S matrices of the L matrices, wherein L is greater than S. When the L pre-coding matrices are square, the decision unit finds a pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices. When the L pre-coding matrices are non-square, the decision unit finds a pre-coding matrix corresponding to a maximum one of the determinants of the at least S matrices.

In order to make the aforementioned and other features and advantages of the present disclosure comprehensible, several exemplary embodiments accompanied with figures are described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.

FIG. 1 is a flowchart illustrating a codebook searching method according to an exemplary embodiment of the present disclosure.

FIG. 2 is a system block diagram illustrating a codebook searching apparatus according to an exemplary embodiment of the present disclosure.

FIG. 3 is a flowchart illustrating another codebook searching method according to an exemplary embodiment of the present disclosure.

FIG. 4 is a flowchart illustrating another codebook searching method according to an exemplary embodiment of the present disclosure.

FIG. 5 is a flowchart illustrating another codebook searching method according to an exemplary embodiment of the present disclosure.

FIG. 6 is a look-up table of code sizes defined according to most of the present standards.

FIG. 7 is a detailed flowchart of a step S410 of FIG. 4.

FIG. 8 is a detailed flowchart of a step S413 of FIG. 4.

DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

An embodiment of the present disclosure provides multiple codebook searching methods and an apparatus using the same, by which a suitable pre-coding matrix used by a receiver can be selected.

Presently, there are multiple rules for determining the suitable pre-coding matrix, and a definition of one of the rules for determining a suitable pre-coding matrix F is as follows:

\[
F = \arg \min_{\mathbf{H}} \max \left[\mathbf{F} \mathbf{M} \mathbf{H}^T \mathbf{F}_{i} + (\mathbf{d} \mathbf{\alpha}_{i} \mathbf{\gamma}) \mathbf{F}_{i}^{-1} \right]
\]

Where \(\mathbf{H} \) is an equivalent flat attenuation channel response matrix, \(\mathbf{F}_{i} \) is an ith pre-coding matrix in the codebook, \(\mathbf{d} \) represents data amount simultaneously transmitted by a multiple input multiple output (MIMO) system, \(\mathbf{\alpha} \) represents a noise power, \(\mathbf{\gamma} \) represents transmitted energy, and \(\mathbf{\gamma}_{i} \) represents a unit matrix with a size of d. Here, \(\mathbf{F}^T \mathbf{H}^T \mathbf{F}_{i} + (\mathbf{d} \mathbf{\alpha}_{i} \mathbf{\gamma}) \mathbf{F}_{i}^{-1} \) is equal to a matrix \(\mathbf{A}_{i} \), then, \(|\mathbf{\alpha}_{i} \mathbf{\gamma}| \) represents a kth value of a diagonal of the matrix \(\mathbf{A}_{i} \), \(\mathbf{A}_{i}^{-1} \) represents an inverse matrix of the matrix \(\mathbf{A}_{i} \), and \(\mathbf{F}_{i}^T \) and \(\mathbf{F}_{i}^{\mathbf{D}} \) respectively represent Hermitian matrices of \(\mathbf{F}_{i} \) and \(\mathbf{H} \).

Actually, the inverse matrix \(\mathbf{A}_{i}^{-1} \) of the matrix \(\mathbf{A}_{i} \) is a mean square error (MSE) matrix of a signal, and the aforementioned judgment rule is to select a pre-coding matrix satisfying a condition that a maximum value of the diagonal of the MSE matrix can be the minimum. Therefore, if each of the pre-coding matrices is calculated to obtain the inverted MSE matrix, and the inverted MSE matrix is calculated according to an inverted matrix operation with a high complexity to obtain the MSE matrix, a chip area of the receiver used for calculating the matrices is huge, and an operation time thereof is very long. It should be noticed that the aforementioned rule is adapted to circumstances that the pre-coding matrix is square or non-square. Therefore, the present exemplary embodiment applies such rule for description, through the present disclosure is not limited thereto.

Since according to the aforementioned judgment rule, only the diagonals in the MSE matrices are required to be compared, and other non-diagonal elements in the MSE matrices are totally useless, in the present exemplary embodiment, a cofactor expansion is used to calculate the MSE matrices, so as to save a calculation amount of the non-diagonal elements of the MSE matrices. Here, assuming the inverted MSE matrix \(\mathbf{A}_{i} \) is 3x3 square, and is represented by:

\[
\mathbf{A}_{i} = \begin{bmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{bmatrix}
\]

the corresponding inverted matrix \(\mathbf{A}_{i}^{-1} \) is represented by:

\[
\mathbf{A}_{i}^{-1} = \frac{1}{\det(\mathbf{A}_{i})} \begin{bmatrix}
\mathbf{c}_{11} & \mathbf{c}_{12} & \mathbf{c}_{13} \\
\mathbf{c}_{21} & \mathbf{c}_{22} & \mathbf{c}_{23} \\
\mathbf{c}_{31} & \mathbf{c}_{32} & \mathbf{c}_{33}
\end{bmatrix}
\]

where the cofactors \(\mathbf{c}_{11}, \mathbf{c}_{22} \) and \(\mathbf{c}_{33} \) of the diagonal of the inverted MSE matrix are calculated as follows, \(\mathbf{c}_{11} = \mathbf{a}_{11} \mathbf{a}_{22} \mathbf{a}_{33} - \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{a}_{33} - \mathbf{a}_{13} \mathbf{a}_{21} \mathbf{a}_{32} \), \(\mathbf{c}_{22} = \mathbf{a}_{11} \mathbf{a}_{22} \mathbf{a}_{33} - \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{a}_{33} - \mathbf{a}_{13} \mathbf{a}_{21} \mathbf{a}_{32} \), and \(\mathbf{c}_{33} = \mathbf{a}_{11} \mathbf{a}_{22} \mathbf{a}_{33} - \mathbf{a}_{12} \mathbf{a}_{21} \mathbf{a}_{33} - \mathbf{a}_{13} \mathbf{a}_{21} \mathbf{a}_{32} \).
The inversed matrix A_{i-1} is obtained according to a transpose operation that a determinant of the matrix A_{i} times a pile of cofactors, wherein the transpose operation is not required to be performed since according to the above judgment rule, only the values of the diagonal of the inverted matrix A_{i-1} are obtained, and positions of the values of the diagonal are not changed due to the transpose operation. Moreover, calculation of the above 3×3 inverted matrix originally requires to calculate 9 cofactors, but now it is simplified to only calculate 3 cofactors of the diagonal and the determinant of the whole matrix. Therefore, regarding the number of the cofactors, 66% calculation amount is saved. Since in the codebook used according to a present standard (for example, 802. 16c or 802. 16m), the pre-coding matrices are all unitary matrices, when the pre-coding matrices of the codebook are square, the determinants of the inverted MSE matrices calculated according to the pre-coding matrices are the same. Therefore, when the pre-coding matrices of the codebook are square, according to the above judgment rule, only the cofactors of the diagonal of the inverted MSE matrix are calculated.

Next, referring to FIG. 1 and FIG. 2, FIG. 1 is a flowchart illustrating a codebook searching method according to an exemplary embodiment of the present disclosure. FIG. 2 is a system block diagram illustrating a codebook searching apparatus 200 according to an exemplary embodiment of the present disclosure. The codebook searching apparatus 200 includes a matrix operation unit 201, a judgment unit 202, a calculation unit 203 and a decision unit 204. The matrix operation unit 201 is coupled to the judgment unit 202 and the calculation unit 203, the judgment unit 202 is coupled to the calculation unit 203 and the decision unit 204, and the calculation unit 203 is coupled to the decision unit 204.

The matrix operation unit 201 is used to receive F_{i}, H, $d_{N_{i}}$ and $e_{i, 0}$ and calculates the inverted MSE matrix corresponding to the pre-coding matrix F_{i}, according to $F_{i}, H, d_{N_{i}}$ and $e_{i, 0}$, i.e. calculates the matrix A_{i}. The judgment unit 202 judges whether the pre-coding matrices of the codebook are square, and controls the calculation unit 203 according to a judgment result to calculate required data of the judgment rule according to L matrices A_{i-1}. This unit 203 and the decision unit 204 according to the judgment result to decide the required pre-coding matrices according to the data calculated by the calculation unit 203. The decision unit 204 decides the pre-coding matrix in the codebook that is used by the receiver according to the data calculated by the calculation unit 203.

It should be noticed that the matrix operation unit 201 can first perform a matrix multiplication between the pre-coding matrix F_{i} and the equivalent flat fading channel response matrix H to generate a matrix $B = H F_{i}$. Next, the matrix operation unit 201 calculates a Hermitian matrix B^{H} of the matrix B. Next, the matrix operation unit 201 calculates the matrix $A_{i} = B^{H} B + (d_{N_{i}}/e_{i})$ according to the matrix B_{i}, the Hermitian matrix B^{H} of the matrix B, $d_{N_{i}}$ and e_{i}. Though the method that the matrix operation unit 201 calculates the matrix A_{i} is not used for limiting the present disclosure.

Referring to FIG. 1 and FIG. 2 again, in step S100, the receiver initializes an index value i to 1. Next, in step S101, the matrix operation unit 201 of the codebook searching apparatus 200 calculates the matrix A_{i} wherein the matrix A_{i} is equal to $F_{i}^{H} F_{i} + (d_{N_{i}}/e_{i}) I_{i}$. Next, in step S102, the matrix operation unit 201 of the codebook searching apparatus 200 checks whether i is equal to 1, and if i is not equal to 1, a step S103 is executed, otherwise, a step S104 is executed. In the step S103, the matrix operation unit 201 of the codebook searching apparatus 200 adds i by 1, i.e. $i = i + 1$. In brief, according to a loop formed by the steps S100-S103, the matrices A_{i-1} are calculated.

Next, in step S104, the judgment unit 202 of the codebook searching apparatus 200 judges whether the pre-coding matrices of the codebook are square, and if yes, the judgment unit 202 of the codebook searching apparatus 200 controls the calculation unit 203 and the decision unit 204 to execute steps S105-S107, and if not, the judgment unit 202 of the codebook searching apparatus 200 controls the calculation unit 203 and the decision unit 204 to execute steps S108-S111.

As described above, when the pre-coding matrices of the codebook are square, the determinants of the matrices $A_{i-1} A_{i}$ calculated according to the pre-coding matrices $F_{i-1} F_{i}$ are the same. Therefore, in the step S105, the calculation unit 203 of the codebook searching apparatus 200 only calculates the cofactors of the diagonals of the L matrices A_{i-1}. Namely, from $i = 1$, the maximum cofactor of the diagonal of the matrix A_{i} is found until $i = L$.

Next, in the step S107, the decision unit 204 of the codebook searching apparatus 200 finds a pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices $A_{i-1} A_{i}$ and provides it to the receiver. For example, the maximum cofactor of the diagonal of the matrix A_{i} is the minimum one of the maximum cofactors of the diagonals of the matrices $A_{i} A_{i-1}$, and the decision unit 204 of the codebook searching apparatus 200 notifies the receiver to use the pre-coding matrix F_{i}.

When the pre-coding matrices of the codebook are non-square, in the step S108, the calculation unit 203 of the codebook searching apparatus 200 calculates the determinants of the L matrices $A_{i-1} A_{i}$, i.e. calculates $\det(A_{i-1}) - \det(A_{i})$. Next, in the step S109, the calculation unit 203 of the codebook searching apparatus 200 calculates the cofactors of the diagonals of the L matrices $A_{i-1} A_{i}$. Namely, from $i = 1$, the maximum cofactor of the diagonal of the matrix A_{i} is found until $i = L$.

Next, in the step S111, the decision unit 204 of the codebook searching apparatus 200 finds a pre-coding matrix corresponding to a minimum one of ratios between the maximum cofactors of the diagonals and the determinants of the L matrices $A_{i-1} A_{i}$, and provides it to the receiver. For example, a ratio between the maximum cofactor of the diagonal and the determinant of the matrix A_{i} is the minimum one of the ratios among the maximum cofactors of the diagonals and the determinants of the L matrices $A_{i-1} A_{i}$, and therefore the decision unit 204 of the codebook searching apparatus 200 notifies the receiver to use the pre-coding matrix F_{i}.

When the pre-coding matrices are non-square, if the determinants of the L matrices $A_{i-1} A_{i}$ are far greater than the maximum cofactors of the diagonals thereof, calculations of the maximum cofactors of the diagonals of the matrices $A_{i-1} A_{i}$ are unnecessary, and only the determinants of the matrices $A_{i-1} A_{i}$ are compared, so as to reduce a calculation amount. In this case, the flowchart of the codebook searching method of FIG. 1 can be modified to form a flowchart of FIG. 3. Referring to FIG. 2 and FIG. 3, FIG. 3 is a flowchart illustrating another codebook searching method according to
an exemplary embodiment of the present disclosure. Wherein, steps S300-S308 are the same as the steps S100-S108 of FIG. 1, and therefore detailed descriptions thereof are not repeated.

In step S309, the decision unit 204 of the codebook searching apparatus 200 finds a pre-coding matrix corresponding to the maximum one of the determinants of the L matrices A1−A2, and provides it to the receiver. For example, the determinant det(Ai) of the matrix Ai is the maximum one of the determinants of the matrices A1−A2, the decision unit 204 of the codebook searching apparatus 200 then notifies the receiver to use the pre-coding matrix I.

When the pre-coding matrices are non-square, time required for calculating the determinants of the matrices is relatively long, and presently most of the pre-coding matrices apply a form of non-square to focus energy on relatively less transmittable units. According to the codebook searching method of the present exemplary embodiment, the L matrices A1−A2 are eliminated to remain S matrices A1−A2 (S is less than L). Wherein, the above eliminating method may use a Hadamard inequality to obtain the S matrices A1−A2, and the Hadamard inequality is as follows:

\[
\det(A_i) \leq \prod_{k=1}^{25} a_{ik} \]

Where aik represents elements of the diagonal of the matrix Ai.

When the pre-coding matrices of the codebook are non-square, the concept of the above Hadamard inequality can be used to eliminate some matrices from the L matrices. First, a diagonal product of each of the L matrices A1−A2 is calculated. Next, (L−S) matrices with relatively small diagonal products in the L matrices A1−A2 are eliminated to remain S matrices A1−A2 for follow-up calculation. Therefore, calculations of the determinants and cofactors of the diagonals of the (L−S) matrices can be reduced.

Referring to FIG. 2 and FIG. 4, FIG. 4 is a flowchart illustrating another codebook searching method according to an exemplary embodiment of the present disclosure. Wherein, steps S400-S407 are the same to the steps S100-S107 of FIG. 1, and therefore detailed descriptions thereof are not repeated. If the pre-coding matrices of the codebook are non-square, in step S408, the calculation unit 203 of the codebook searching apparatus 200 calculates the diagonal product of each of the L matrices A1−A2, in other words, calculates the diagonal products. Next, in step S409, the calculation unit 203 of the codebook searching apparatus 200 eliminates (L−S) matrices with relatively small diagonal products from the L matrices A1−A2 to remain S matrices A1−A2 for follow-up calculation.

The steps S408 and S409 are mainly used for eliminating the pre-coding matrices with lower possibilities, so as to reduce a calculation amount of calculating the determinants of the L matrices A1−A2 that has to be performed in the codebook searching method of FIG. 1. Though, compared to the codebook searching method of FIG. 1, the steps S408 and S409 have to be additionally executed in the codebook searching method of FIG. 4, the calculation results for calculating the diagonal products of the matrices A1−A2 can be used for calculating the determinants of the S matrices A1−A2, so that additional calculation is not performed.

In step S410, the calculation unit 203 of the codebook searching apparatus 200 calculates the determinants of the S matrices A1−A2. Next, in step S411, the calculation unit 203 of the codebook searching apparatus 200 calculates the cofactors of the diagonals of the S matrices A1−A2. Next, in step S412, the calculation unit 203 of the codebook searching apparatus 200 finds a maximum cofactor of the diagonal of each of the S matrices A1−A2. Next, in step S413, the decision unit 204 of the codebook searching apparatus 200 finds a pre-coding matrix corresponding to a minimum one of ratios among the maximum cofactors of the diagonals and the determinants of the S matrices A1−A2, and provides it to the receiver for utilization.

Similarly, the method of eliminating the L matrices A1−A2 by using the Hadamard inequality can also be applied to the codebook searching method of FIG. 3. Referring to FIG. 5, FIG. 5 is a flowchart illustrating another codebook searching method according to an exemplary embodiment of the present disclosure. In the present exemplary embodiment, steps S500-S510 are the same to the steps S400-S410 of FIG. 4, and therefore detailed descriptions thereof are not repeated. In step S511, the decision unit 204 of the codebook searching apparatus 200 finds a pre-coding matrix corresponding to a maximum one of the determinants of the S matrices A1−A2, and provides it to the receiver for utilization.

Next, simplification is continually performed in allusion to the non-square circumstance. Referring to FIG. 6, FIG. 6 is a look-up table of code sizes defined according to most of the present standards. Codes of a 2×4 pre-coding matrix shown in FIG. 6 are non-symmetric, so that a determinant of a 4×4 inverse MSE matrix is probably calculated. Therefore, each of the matrices with a rank greater than 3 is decomposed to reduce the calculation amount for calculating the determinants of the matrices. Although a size of the inverse MSE matrix is probably 4×4 or greater, after the decomposition, when the cofactor of the inverse MSE matrix is calculated, only a 3×3 determinant is calculated.

Therefore, a QR decomposition calculation unit already existed in the receiver of the MIMO wireless communication system can be used to perform a QR decomposition to the inverse MSE matrix with a size of 4×4 or greater, so that when the cofactor of the matrix is calculated, only a 3×3 determinant is calculated. Next, a 4×4 matrix Ai is used to describe how to simplify calculation of the determinant by using the QR decomposition, though the size of the matrix Ai is not limited to be 4×4, which can be greater than 4×4.

Assuming the matrix Ai is represented by:

\[
A_i = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\]

after the QR decomposition is performed to the matrix Ai, Q'RA is obtained, wherein R is represented by:

\[
R = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} & r_{14} \\
 0 & r_{22} & r_{23} & r_{24} \\
 0 & 0 & r_{33} & r_{34} \\
 0 & 0 & 0 & r_{44}
\end{bmatrix}
\]
Since $\det(Q^*) = 1$, $\det(M) = \det(Q^*A_0) \cdot \det(R)$, namely, $\det(R)$ can be represented by:

$$\det(R) = r_1 \cdot \begin{vmatrix} r_{22} & r_{23} & r_{24} \\ r_{32} & r_{33} & r_{34} \\ r_{42} & r_{43} & r_{44} \end{vmatrix}$$

Therefore, by using the QR decomposition to simplify a calculation of the determinant of the matrix A_0 with a size greater than 3×3, the time and calculation amount required for searching the pre-coding matrix can be reduced.

Next, referring to FIG. 7, FIG. 7 is a detailed flowchart of the step S410 of FIG. 4. In the step S410, the QR decomposition is used to simplify each of the matrices $A_1^- \sim A_3^-$ with a size greater than 3×3, so as to quickly calculate the determinants thereof. Certainly, the above concept of using the QR decomposition to simplify calculation of the determinants can be applied to the steps S108, S308 and S510.

In step S700, the judgment unit 202 of the codebook searching apparatus 200 judges whether the sizes of the S matrices $A_1^- \sim A_3^-$ are greater than 3×3. If the sizes of the S matrices $A_1^- \sim A_3^-$ are smaller than 3×3, the calculation unit 203 of the codebook searching apparatus 200 is notified to execute a step S703, and if the sizes of the S matrices $A_1^- \sim A_3^-$ are greater than 3×3, the calculation unit 203 of the codebook searching apparatus 200 is notified to execute steps S701 and S702. In the step S703, since the size of the S matrices $A_1^- \sim A_3^-$ are smaller than 3×3, the calculation unit 203 of the codebook searching apparatus 200 directly calculates the determinants of the S matrices $A_1^- \sim A_3^-$. In the step S701, since the size of the S matrices $A_1^- \sim A_3^-$ are greater than 3×3, the calculation unit 203 of the codebook searching apparatus 200 performs the QR decomposition to the S matrices $A_1^- \sim A_3^-$. Wherein, the calculation unit 203 includes the QR decomposition calculation unit, and the QR decomposition calculation unit can be a QR decomposition calculation unit which originally exists in the receiver. Next, in the step S702, the calculation unit 203 of the codebook searching apparatus 200 calculates the determinants of the S matrices $A_1^- \sim A_3^-$ according to decomposed results. Wherein, how to calculate the determinants of the S matrices $A_1^- \sim A_3^-$ according to the decomposed results has been described above, and therefore detailed description thereof is not repeated.

Referring to FIG. 4 again, implementation of simplifying the division operation of the step S413 is introduced. However, the implementation of simplifying the division operation can also be applied to the step S111. Since the decision unit 204 of the codebook searching apparatus 200 needs to obtain a minimum one of ratios between the maximum co-factors of the diagonals and the determinants of the matrices $A_1^- \sim A_3^-$, the decision unit 204 of the codebook searching apparatus 200 has to perform the division operations. However, the division operations can be avoided through cross multiplication.

First, the decision unit 204 of the codebook searching apparatus 200 arbitrarily selects two values from $1 \sim S$ for p and j. Next, the decision unit 204 of the codebook searching apparatus 200 compares the ratios between the maximum co-factors of the diagonals and the determinants of the matrices A_p^+ and A_j^+ (p is not equal to j). Comparison of $e^{\phi} \cdot \det(A_j^+)$ and $e^{\phi} \cdot \det(A_p^+)$ is equivalent to comparison of $e^{\phi} \cdot \det(A_j^+)$ and $e^{\phi} \cdot \det(A_p^+)$, wherein the determinants of the matrices A_p^+ and A_j^+ are respectively $\det(A_j^+)$ and $\det(A_p^+)$, and the maximum co-factors of the diagonals of the matrices A_p^+ and A_j^+ are respectively c_p and c_j. If $e^{\phi} \cdot \det(A_j^+)$ is smaller than $e^{\phi} \cdot \det(A_p^+)$, the decision unit 204 of the codebook searching apparatus 200 sets the index value x to p, and renews the value of j, wherein j is not a value ever selected by j and p. If $e^{\phi} \cdot \det(A_j^+)$ is smaller than $c_j \cdot \det(A_j^+)$, the decision unit 204 of the codebook searching apparatus 200 sets the index value x to j, and renews the value of p, wherein p is not a value ever selected by j and p. The above comparison is repeated until p and j have no value to select, and the decision unit 204 of the codebook searching apparatus 200 then finds the pre-coding matrix F_x corresponding to the minimum one of the ratios between the maximum co-factors of the diagonals and the determinants of the matrices $A_1^- \sim A_3^-$. Next, referring to FIG. 8, FIG. 8 is a detailed flowchart of the step S413 of FIG. 4. Here, the maximum co-factors of the diagonals of the matrices $A_1^- \sim A_3^-$ are first defined to be $c_1 \sim c_3$. In step S800, the decision unit 204 of the codebook searching apparatus 200 respectively sets i and j to be 2 and 1. Next, in step S801, the decision unit 204 of the codebook searching apparatus 200 judges whether $c_{i} \cdot \det(A_j^+)$ is smaller than $c_j \cdot \det(A_j^+)$ and $c_{i} \cdot \det(A_i^+)$ is smaller than $\det(A_i^+)$. In step S802, the decision unit 204 of the codebook searching apparatus 200 sets j to be 1. If $c_{i} \cdot \det(A_j^+)$ is not smaller than $c_j \cdot \det(A_j^+)$, a step S803 is executed.

In the step S803, the decision unit 204 of the codebook searching apparatus 200 determines whether i is equal to S, and if i is equal to S, a step S805 is executed, and if i is not equal to S, a step S804 is executed. In the step S804, the decision unit 204 of the codebook searching apparatus 200 adds i by 1, i.e. $i \leftarrow i + 1$. In the step S805, the decision unit 204 of the codebook searching apparatus 200 selects the pre-coding matrix F_j for the receiver to use. By comparing each two cross multiplications, the division operation of the step S413 can be avoided.

In summary, the present disclosure provides multiple pre-coding searching methods and the apparatus thereof, and in the pre-coding searching methods, the calculation amount can be reduced by calculating the co-factors of the diagonals or the determinants.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.

What is claimed is:

1. A codebook searching method for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2, the codebook searching method comprising:

- calculating L matrices according to the L pre-coding matrices, wherein the L matrices are inverted mean square error (MSE) matrices of the L pre-coding matrices; and
- executing a first step when the L pre-coding matrices are square, wherein the first step comprises:
 - calculating co-factors of diagonals of the L matrices;
 - finding a maximum co-factor of the diagonal of each of the L matrices; and
 - finding a pre-coding matrix corresponding to a minimum one of the maximum co-factors of the diagonals of the L matrices.

2. The codebook searching method as claimed in claim 1, further comprising:

- selectively executing one of a second to a third steps when the L pre-coding matrices are non-square,
wherein the second step comprises:
calculating determinants of the L matrices;
calculating the cofactors of the diagonals of the L matrices;
finding the maximum cofactor of the diagonal of each of the L matrices; and
finding a pre-coding matrix corresponding to a minimum one of ratios among the maximum cofactors of the diagonals and the determinants of the L matrices; and

wherein the third step comprises:
calculating the determinants of the L matrices; and
finding a pre-coding matrix corresponding to a maximum one of the determinants of the L matrices.

3. The codebook searching method as claimed in claim 1, further comprising:
selectively executing one of a second to a third steps when the L pre-coding matrices are non-square,
wherein the second step comprises:
calculating diagonal products of the L matrices;
eliminating (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1;
calculating determinants of the S matrices;
calculating cofactors of diagonals of the S matrices;
finding a maximum cofactor of the diagonal of each of the S matrices; and
finding a pre-coding matrix corresponding to a minimum one of ratios among the maximum cofactors of the diagonals and the determinants of the S matrices; wherein the third step comprises:
calculating the diagonal products of the L matrices;
eliminating (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1;
calculating the determinants of the S matrices; and
finding a pre-coding matrix corresponding to a maximum one of the determinants of the S matrices.

4. The codebook searching method as claimed in claim 3, wherein the step of calculating the determinants of the S matrices further comprises:
determining whether sizes of the S matrices are greater than 3x3;
直接 calculating the determinants of the S matrices when the sizes of the S matrices are smaller than 3x3; and
performing QR decompositions to the S matrices when the sizes of the S matrices are greater than 3x3, and calculating the determinants of the S matrices according to results of the QR decompositions.

5. The codebook searching method as claimed in claim 3, wherein the step of finding the pre-coding matrix corresponding to the minimum one of the ratios between the maximum cofactors of the diagonals and the determinants of the S matrices further comprises:
arbitrarily selecting two matrices A_i and A_j from the S matrices;
comparing c^i\times\text{det}(A_i) and c^j\times\text{det}(A_j), wherein c^i and c^j are maximum cofactors of the diagonals of the matrices A_i and A_j, and \text{det}(A_i) and \text{det}(A_j) are the determinants of the matrices A_i and A_j, and i is not equal to j;
setting an index value x=i, and renewing a value of j if c^i\times\text{det}(A_i) is smaller than c^j\times\text{det}(A_j), wherein j is not a value ever selected by i and j;
repeating the above steps until i and j have no value to select, and selecting the pre-coding matrix F_i.

6. The codebook searching method as claimed in claim 2, wherein the step of calculating the determinants of the L matrices further comprises:
determining whether sizes of the L matrices are greater than 3x3;
directly calculating the determinants of the L matrices when the sizes of the L matrices are smaller than 3x3; and
performing QR decompositions to the L matrices when the sizes of the L matrices are greater than 3x3, and calculating the determinants of the L matrices according to results of the QR decompositions.

7. The codebook searching method as claimed in claim 2, wherein the step of finding the pre-coding matrix corresponding to the minimum one of the ratios between the maximum cofactors of the diagonals and the determinants of the L matrices further comprises:
arbitrarily selecting two matrices A_i and A_j from the L matrices;
comparing c^i\times\text{det}(A_i) and c^j\times\text{det}(A_j), wherein c^i and c^j are maximum cofactors of the diagonals of the matrices A_i and A_j, and \text{det}(A_i) and \text{det}(A_j) are the determinants of the matrices A_i and A_j, and i is not equal to j;
setting an index value x=i, and renewing a value of j if c^i\times\text{det}(A_i) is smaller than c^j\times\text{det}(A_j), wherein j is not a value ever selected by i and j;
repeating the above steps until i and j have no value to select, and selecting the pre-coding matrix F_i.

8. A codebook searching method for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2, the codebook searching method comprising:
calculating L matrices according to the L pre-coding matrices, wherein L and the matrices are inverses MSE matrices of the L pre-coding matrices; and
selectively executing one of a first to a fourth steps when the L pre-coding matrices are non-square,
wherein the first step comprises:
calculating determinants of the L matrices;
calculating cofactors of diagonals of the L matrices;
finding a maximum cofactor of the diagonal of each of the L matrices; and
finding a pre-coding matrix corresponding to a minimum one of ratios between the maximum cofactors of the diagonals and the determinants of the L matrices; wherein the second step comprises:
calculating the determinants of the L matrices; and
obtaining a pre-coding matrix corresponding to the maximum one of the determinants of the L matrices; wherein the third step comprises:
calculating diagonal products of the L matrices;
eliminating (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1;
calculating determinants of the S matrices;
calculating cofactors of diagonals of the S matrices;
finding a maximum cofactor of the diagonal of each of the S matrices; and
13. The codebook searching method as claimed in claim 8, wherein the step of finding the pre-coding matrix corresponding to the minimum one of the ratios between the maximum cofactors of the diagonals and the determinants of the L matrices further comprises: arbitrarily selecting two matrices A_i and A_j from the L matrices; comparing $c' \times \text{det}(A_i)$ and $c' \times \text{det}(A_j)$, wherein c' and c'' are maximum cofactors of the diagonals of the matrices A_i and A_j, and $\text{det}(A_i)$ and $\text{det}(A_j)$ are the determinants of the matrices A_i and A_j, and i is not equal to j; setting an index value $x=i$, and renewing a value of j if $c' \times \text{det}(A_j)$ is smaller than $c'' \times \text{det}(A_i)$, wherein j is not a value ever selected by i and j; setting an index value $x=j$, and renewing a value of i if $c' \times \text{det}(A_i)$ is smaller than $c'' \times \text{det}(A_j)$, wherein i is not a value ever selected by i and j; and repeating the above steps until i and j have no value to select, and selecting the pre-coding matrix F_{ij}.

14. A codebook searching apparatus for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2, the codebook searching apparatus comprising: a matrix operation unit, calculating L matrices according to the L pre-coding matrices, wherein the L matrices are inverted MSE matrices of the L pre-coding matrices; a judgment unit, judging whether the L pre-coding matrices are square, and controlling a calculation unit and a decision unit; the calculation unit, calculating maximum cofactors of diagonals of the L matrices when the L pre-coding matrices are square, and calculating the maximum cofactors of the diagonals and determinants of at least S matrices of the L matrices when the L pre-coding matrices are non-square, wherein L is greater than S; and the decision unit, finding a pre-coding matrix corresponding to a minimum one of the ratios between the maximum cofactors of the diagonals and the determinants of the at least S matrices when the L pre-coding matrices are non-square.

15. The codebook searching apparatus as claimed in claim 14, wherein when the L pre-coding matrices are non-square, the calculation unit calculates diagonal products of the L matrices, and eliminates (L−S) matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1.

16. The codebook searching apparatus as claimed in claim 14, wherein when the L pre-coding matrices are non-square, the judgment unit judges whether sizes of the at least S matrices are greater than 3x3, when the sizes of the at least S matrices are smaller than 3x3, the calculation unit directly calculates the determinants of the at least S matrices, and when the sizes of the at least S matrices are greater than 3x3, the calculation unit first performs QR decompositions to the at least S matrices and calculates the determinants of the at least S matrices according to results of the QR decompositions.
comparing $c' \times \text{det}(A_i)$ and $c' \times \text{det}(A_j)$, wherein c' and c' are maximum cofactors of the diagonals of the matrices A_i and A_j, and $\text{det}(A_i)$ and $\text{det}(A_j)$ are the determinants of the matrices A_i and A_j, and i is not equal to j;

setting an index value $x(i)$, and renewing a value of j if $c' \times \text{det}(A_i)$ is smaller than $c' \times \text{det}(A_j)$, wherein j is not a value ever selected by i and j;

setting an index value $x(j)$, and renewing a value of i if $c' \times \text{det}(A_i)$ is smaller than $c' \times \text{det}(A_j)$, wherein i is not a value ever selected by i and j; and

repeating the above steps until i and j have no value to select, and selecting the pre-coding matrix F_c.

18. A codebook searching apparatus for a communication system, wherein the communication system uses a codebook having L pre-coding matrices, and L is greater than or equal to 2, the codebook searching apparatus comprising:

a matrix operation unit, calculating L matrices according to the L pre-coding matrices, wherein the L matrices are inverses of MSN matrices of the L pre-coding matrices;

a judgment unit, judging whether the L pre-coding matrices are square, and controlling a calculation unit and a decision unit;

the calculation unit, calculating maximum cofactors of diagonals of the L matrices when the L pre-coding matrices are square, and calculating determinants of at least S matrices of the L matrices when the L pre-coding matrices are non-square, wherein L is greater than S; and

the decision unit, finding a pre-coding matrix corresponding to a minimum one of the maximum cofactors of the diagonals of the L matrices when the L pre-coding matrices are square, and finding a pre-coding matrix corresponding to a maximum one of the determinants of the at least S matrices when the L pre-coding matrices are non-square.

19. The codebook searching apparatus as claimed in claim 18, wherein when the L pre-coding matrices are non-square, the calculation unit calculates diagonal products of the L matrices, and eliminates $(L-S)$ matrices with relatively small diagonal products from the L matrices to remain S matrices, wherein S is less than L and is greater than or equal to 1.

20. The codebook searching apparatus as claimed in claim 18, wherein when the L pre-coding matrices are non-square, the judgment unit judges whether sizes of the at least S matrices are greater than 3×3, when the sizes of the at least S matrices are smaller than 3×3, the calculation unit directly calculates the determinants of the at least S matrices, and when the sizes of the at least S matrices are greater than 3×3, the calculation unit first performs QR decompositions to the at least S matrices and calculates the determinants of the at least S matrices according to results of the QR decompositions.

* * * * *