Advanced VLSI Design
高等積體電路設計

09.18.2002
Professor An-Yeu (Andy) Wu 吳安宇
Graduate Institute of Electronics Engineering
National Taiwan University
Course Information

❖ Lecture Time
 ❖ EE II Rm. E2-143, Wednesday 2:10PM~5:00PM

❖ Instructor
 ❖ An-Yeu (Andy) Wu 吳安宇 (E2-409)
 ❖ E-mail: andywru@cc.ee.ntu.edu.tw

❖ Teaching Assistant (TA)
 ❖ 許槐益 (Lab 331)
 ❖ E-mail: yuki@access.ee.ntu.edu.tw

❖ Class web page
 ❖ http://access.ee.ntu.edu.tw/course
Course Objectives

- This course is designed for undergraduate students who have taken “Introduction to VLSI”, and graduate students who want to learn advanced VLSI design skills and tools.
- In the content part, we will cover the design techniques for advanced VLSI systems, such as advanced computer arithmetic, low-power VLSI design, and Wave-pipelining and Asynchronous VLSI designs.
- To follow the trend of “System-on-Chip (SOC)” design, we will add the new topic: System-on-a-Programmable-Chip (SOPC). Three labs will be given to learn how to use SOPC.
- Extensive homeworks and Labs will be given in this course.
Course Outline

- Advanced Computer Arithmetic Operations (Slides)
 - Booth-encoded Multiplier
 - 2’s complement Multiplier
 - Division Circuits
 - CORDIC (Low-cost Rotational Circuits)
 - Residue Number System (RNS)
 - Distribution Arithmetic (DA)
 - Digital-serial Architectures

- Redundant Arithmetic a. (Chap. 14 of Textbook)
- Numerical Strength Reduction (Chap. 16 of Textbook)
- Low-power CMOS Design (Chap. 17 of Textbook)
- Wave-pipelining VLSI Design (Chap. 16 of Textbook)
- Asynchronous VLSI Design (Chap. 16 of Textbook)
- System-on-Programmable-Chip (SOPC) system and labs (one month)
- Final special project proposal writing and presentation
<table>
<thead>
<tr>
<th>Date</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/18</td>
<td>Array Multiplier / Booth-encoded Multiplier</td>
</tr>
<tr>
<td>9/25</td>
<td>2’s Complement Multiplier / Array Division Circuit</td>
</tr>
<tr>
<td>10/2</td>
<td>CORDIC / Residue Number System (RNS)</td>
</tr>
<tr>
<td>10/9</td>
<td>RNS / Distribution Arithmetic</td>
</tr>
<tr>
<td>10/16</td>
<td>Redundant Arithmetic</td>
</tr>
<tr>
<td>10/23</td>
<td>Digit-Serial architecture</td>
</tr>
<tr>
<td>10/30</td>
<td>Numerical Strength Reduction</td>
</tr>
<tr>
<td>11/6</td>
<td>Low-Power CMOS design</td>
</tr>
<tr>
<td>11/13</td>
<td>Mid-term exam</td>
</tr>
<tr>
<td>11/20</td>
<td>Wave-pipelining VLSI design</td>
</tr>
<tr>
<td>11/27</td>
<td>Asynchronous VLSI design</td>
</tr>
<tr>
<td>12/4</td>
<td>Asynchronous VLSI design</td>
</tr>
<tr>
<td>12/11</td>
<td>System of Programmable Chip (SOPC): Overview</td>
</tr>
<tr>
<td>12/18</td>
<td>SOPC Tool and Environment & Lab I / Final report presentation</td>
</tr>
<tr>
<td>12/25</td>
<td>SOPC Tool and Environment & Lab II / Final report presentation</td>
</tr>
<tr>
<td>1/1</td>
<td>National Holiday</td>
</tr>
<tr>
<td>1/8</td>
<td>SOPC Tool and Environment & Lab III / Final report presentation</td>
</tr>
<tr>
<td>1/15</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>
Textbooks

- Course notes and papers.

Referenced Tool textbooks:

Class Policy

- Grading method
 - Homework and Labs: 36%
 - Midterm exam: 32% (in class, close book)
 - Final Project: 30%
 - Participation: 2%

- Homework
 - Hand in before class begins on the due date.
 - Discussion with classmates is encouraged, copying not allowed

- Final Project
 - Project proposal (4~6 pages) due: 12/4/91
 - Final presentation and report: 12/18/91 ~ 1/8/92

Also note: PLEASE
- Turn off your cell phone during class
What can you learn from this course?

- Algorithms and architectures for Advanced computer arithmetic
- New VLSI design concepts that are not covered in under basic VLSI courses.
- SOPC design flow (evolved from FPGA design flow): Similar to VLSI Design Laboratory Course but with more emphasis on emerging SOC design concept (e.g., RMM) and design kit (e.g., SOPC)

Suitable for
- Undergraduate students who want to learn complete digital IC design flow after taking “Introduction of VLSI”
- Non-ICS Graduate students who want to learn more design skills for future jobs (but with basic VLSI background)