chap 6 Karnaugh map

* Problems in algebraic simplification

1. The procedures are difficult to apply in a systematic way.
2. It is difficult to tell when you have arrived at a minimum solution. (minimum sop, pos)

⇒ Karnaugh map (K-map) is the solution

\[\begin{array}{c|cc}
M_0 & A'B & AB \\
--- & --- & --- \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array} \]

\[\begin{array}{c|cc}
M_1 & A'B & AB \\
--- & --- & --- \\
2 & 1 & 0 \\
3 & 1 & 0 \\
\end{array} \]

\[A'B + AB = A' (B+0) = A' \]

\[\begin{array}{c|ccc}
B'C & 00 & 01 & 11 \\
--- & --- & --- & --- \\
00 & 0 & 0 & 0 \\
01 & 0 & 1 & 0 \\
11 & 0 & 1 & 1 \\
10 & 0 & 0 & 1 \\
\end{array} \]
Ex. K-Map for \(F(a,b,c) = \Sigma m(1,3,5) \)

\[= \Pi \bar{M}(0,2,4,6,7) \]

\[F = \bar{A}C + B\bar{C} \]

\[= \text{Minimum SOP form} \]

Other combinations

\[F = B \]

\[F = B\bar{C} + B\bar{C}' \]

\[F = A\bar{C}' \]

\[= C' \]

Ex1. \(f(a,b,c) = abc + bc + \bar{a} \)

\[\Rightarrow F = \bar{A} + BC + BC' \]
Consensus theorem: $XZ + XZ + YZ = XZ + XZ$

$F = \Sigma m(0, 1, 2, 5, 6, 7)$

$F(a, b, c) = a'b' + bc' + ac$

$F(a, b, c) = a'c' + bc + ab$

6.3 4-variable of K-map

F_{ac}, K-map of $F(a, b, c, d)$

$= \text{ac} \text{d} + \text{a'} \text{b} + \text{d'} \text{c}$

Diagram of K-map with variables A, B, C, D.
Ex. 1. \(F = \Sigma m(1, 3, 4, 5, 10, 12, 13) \)

\[F = BC' + AB'D + AB'CP' \]

* Circle of \(2^k \)

\(\Rightarrow \) Eliminate \(K \) Variables

Ex. 2. \(F = \Sigma m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15) \)

\[F = C + b'd' + a'bd \]

Ex. 3. \(F = \Sigma m(1, 3, 5, 7, 9) + \Sigma d(6, 12, 13) \)

\[F = A'D + C'D \quad (SOP) \]

Ex. 4. Get POS form of minimum \(f(a, b, c, d) \)

\(\Rightarrow \) check SOP form of \(f'(a, b, c, d) \)

\(\Rightarrow \) Looping the "0"'s or a map of \(f(a, b, c, d) \)
6.4. Essential Prime Implicants.

* Implicant: Any single 1 or any group of 1's in the K-map of F function.

* Prime Implicant: If it cannot be combined with another term to eliminate a variable.

- A single 1 on a map represents a PI if it is not adjacent to any other 1's.
- Two adjacent 1's on a map form a PI if they are not contained in a group of 4 1's.
- and so on.
* Implicant: A product term (11個)

 - 5 minterms: \{AB'C, A'BC', A'B'C, ABC', ABC\}
 - 5 group of 2 minterms: \{A'B, AB, A'C, BC', BC\}
 - 1 group of 4 minterms: \{B\}

* Prime Implicant (PI): An implicant that is not covered by another implicant: \{B, A'C\}

* Essential Prime Implicant: A PI that covers at least one minterm that is not covered by another PI. \{B, A'C\} are also Essential PI.

⇒ An essential PI in the K-map by noting that it covers at least one minterm that is circled only once.

* Cover: A set of PI's which covers all 1's (all minterms)
All PI's:
\[a'b'd, b'c', ac, a'c'd, ab, b'c'd \]
Essential PI = \{ b'c, ac \}

All PI's:
\[\{ cd, bd, b'c, ac \} \]
Essential PI's:
\[\{ bd, b'c, ac \} \]
\[f = bd + b'c + ac \]

Essential PI's:
\[\{ ac, a'b'd', ac'd \} \]
Two PI's can cover:
\[A'b'cd \]
\[\{ A'b'd, b'cd \} \]
\[f = ac + a'b'd' + ac'd + \{ a'b'd \} \]
\[\text{or} \ b'cd \]
* Rule: ① Find all Essential PI's

(Fig. 6-19) ② Find a minimum set of PI's to cover the remaining 1's on the map.

chap 7: Quine-McClusky Method

⇒ Computer algorithm to perform logic minimization (略)

Exam: Try

\[f(A, B, C, D) = B'D' + B'C' + BCD \]