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Robust PPG-Based Mental Workload
Assessment System Using Wearable Devices
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Abstract—Heart rate variability (HRV) has been used
in assessing mental workload (MW) level. Compared with
ECG, photoplethysmogram (PPG) provides convenient in
assessing MW with wearable devices, which is more
suitable for daily usage. However, PPG collected by smart-
watches are prone to suffer from artifacts. Those signal
corruptions cause invalid Inter-beat Intervals (IBl), mak-
ing it challenging to evaluate the HRV feature. Hence,
the PPG-based MW assessment system is difficult to ob-
tain a sustainable and reliable assessment of MW. In this
paper, we propose a pre- and post- processing technique,
called outlier removal and uncertainty estimation, respec-
tively, to reduce the negative influences of invalid IBls. The
proposed method helps to acquire accurate HRV features
and evaluate the reliability of incoming IBls, rejecting pos-
sibly misclassified data. We verified our approach in two
open datasets, which are CLAS and MAUS. Experiment
results show proposed method achieved higher accuracy
(66.7% v.s. 74.2%) and lower variance (11.3% v.s. 10.8%)
among users, which has comparable performance to an
ECG-based MW system.

Index Terms—Photoplethysmogram (PPG), mental
workload assessment, Signal Quality Index (SQl), outlier
removal.

|. INTRODUCTION

ENTAL Workload (MW) refers to the portion of operator
M information processing capacity or resources that are
required to meet system demands [1]. A high mental workload
means more information processing capacity or resources in
performing a task. The MW assessment helps understand human
operators in terms of processing capability or subjective psycho-
logical experiences [2]. Hence, MW assessment is an essential
consideration for avoiding task error or working under overload
conditions. As illustarted in Fig. 1, it possesses numerous ap-
plications, ranging from safety to smart technology, including
driver awareness [3]-[5], mental health monitoring [6], and
Brain-Computer Interfacing (BCI) [7].
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Fig. 1. Application scenario of the PPG-based MW system.

Cardiovascular parameters are affected by the mental state
of a person. Studies have suggested that Heart Rate Variability
(HRV) is a helpful index for assessing mental workload [8]-[10].
HRYV acquired from ECG is widely used and has a long history
for the assessment of mental workload. It can measure the time
and frequency domain information from heart activity by the
Inter-beat Intervals (IBI), indicating sympathetic and parasym-
pathetic nervous activity for mental workload assessment.

Although we can use ECG to achieve the assessment of men-
tal workload, however, we prefer photoplethysmogram (PPG)
over ECG for long-term monitoring scenarios. It is because the
measurement of ECG needs multiple contact points across the
heart to form an electric loop. The way to measure ECG is
unacceptable to smartwatch users when they need to put their
finger on smartwatches for along time. With regards to this, some
PPG-based MW assessment systems have been introduced [11]-
[13]. The benefit of using PPG-based MW assessment is the
simple measurement that does not interfere with users’ activity.
On the contrary, the PPG peaks are less discernible than that of
ECG, making it harder to detect the peak from PPG than ECG.
Moreover, PPG is highly likely to be contaminated by motion
noise during prolonged monitoring. Compared with ECG, valid
beat interval retrieved from PPG is only around 50%, while
ECG can result up to 99% of valid beat intervals [14]. The
incorrect beats interval will propagate the error to the extracted
HRV features, making the PPG-based system less robust.

Conventionally, researchers focus on finding valuable features
or models to perform accurate MW assessments. However, there
is less attention to the problem of misclassifying MW levels
by contaminated PPG signals. In this paper, we developed pre-
and post-processing techniques to reduce the negative impact
of contaminated PPG, then present a robust PPG-based MW
assessment system using smartwatches, as illustrated in Fig. 2.
It consists of three parts:
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Fig. 2. Processing flow of the (a) conventional MW system and (b) the proposed MW system.

1) Typical MW assessment system

2) Pre-processing: Outlier Removing Mechanism

3) Post-processing: Uncertainty Estimation

The pre-process technique, called outlier removal, aims to
detect and remove invalid PPG beat intervals to get an accurate
HRYV feature. Conventionally, outlier removal relies on numeri-
cal techniques [15], [16]. Different from conventional methods,
we build an outlier removal mechanism by training a classifier.
We have used signal quality indices (SQIs) as features, and the
invalid beat interval label by synchronized ECG.

After removing several invalid beat intervals, it could af-
fect the detection reliability. Hence, we propose a post-process
technique, called the uncertainty estimation model, to estimate
the reliability of the incoming processed signal. The proposed
post-process technique will determine the uncertainty level of
the signal. A higher uncertainty level means the processed signal
has a higher probability of reporting random outcomes, which
also means unreliable. Once the detection result is not reliable
enough, we will not report the detection result. With the combi-
nation of pre- and post-process techniques of PPG signals, we
can achieve similar performance to ECG-based MW detection.

In summary, our contributions are listed below:

1) We propose a pre-processing technique for removing
IBIs outlier. Different to conventional numerical methods,
the proposed outlier removal is composed of machine
learning classifier and Signal Quality Indices (SQIs) as
features, which can accurately remove invalid beats. As
a result, the calculated HRV feature has only 0.05%
absolute relative error, while conventional methods have
1.8% of error.

2) We created a ECG-assisted labeling method to retrieve
the outlier label for outlier removal system. This method
allows us automatically generate a sequence of outlier
label cross-checking the IBIs between ECG and PPG,
which reduce a lot of effort in manual labeling.

3) We propose a post-processing technique, called uncer-
tainty estimation, for rejecting probably misclassified
data. To the best of our knowledge, we are the first to
investigate the misclassified probability of the processed

Authorized licensed use limited to: National Taiwan University. Downloaded

IBIs. The experiment result shows that the estimated
score from proposed technique is highly correlated to the
wrong classification ratio. By rejecting unreliable data,
we further improves the accuracy of MW detection and
lowering the standard deviation among peoples.

The remaining part of this paper is organized as follows: We
will first introduce typical MW assessment system in Section II.
After that, we explain the proposed pre-processing and post-
processing techniques in Section III and Section I'V respectively.
Next, the overall system performance will be illustrated in
Section V. Finally, we conclude our work in Section VI.

1. REVIEW: TYPICAL PPG-BASED MW ASSESSMENT
SYSTEM

In this section, we will introduce the typical processing flow
of PPG-based MW assessment system. The processing flow
of typical PPG-based MW assessment system is illustrated in
Fig. 2(a). First, the system will perform a peak detection to
get inter-beat-intervals (IBIs). Next, the IBIs sequences are then
used to extract HRV feature. Lastly, these features will be use to
classify MW levels. We will describe these processing block in
following subsection.

A. Peak Detection

PPG is susceptible to noise such as movement, breathing,
and wristband tightness, which can cause baseline wandering
in signals. As illustrated in Fig. 3(a), a severe baseline wander
will lead to a wrong/inaccurate peak position. Hence, before
detecting the peak, we have applied Empirical Mode Decompo-
sition [17] for baseline wander removal. We chose EMD because
the peak locations can be reserved after employing it to raw PPG.
Next, we used the algorithm from [18] for the peak detection,
shown in Fig. 3(b). We can get IBIs from either detect PPG peak
or valley. In our work, we chose to detect PPG valley instead of
peak because PPG valley has higher contrast for the detection.
The IBIs from valley position are considered to be more reliable
than peaks for HRV analysis [19].
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B. Feature Extraction of HRV

After getting the IBIs, we are going to extract HRV feature
from IBIs. HRV is correlated with MW changes and tends to
diminish when a higher MW is generated [20]. It is calculated by
analyzing the time series of the beat-to-beat intervals from ECG
or PPG. There are various methods for extracting HRV, which
can be divided into three analysis methods of time-domain,
frequency-domain, and nonlinear-domain.

1) Time Domain: The features indicate the total variability
of heartbeats using statistical methods [21], including
the standard deviation of IBIs (SDNN), the square root
of the mean squared differences between adjacent IBIs
(RMSSD), the standard deviation of differences between
adjacent IBIs (SDSD), the count or percentage of succes-
sive beats lengths that differed more than 50 ms (NN50,
pNN50), the IBIs triangular index and the triangular
interpolation of IBI histogram (Trilndex, TINN).

2) Frequency Domain: A spectrum estimation was calcu-
lated for the IBI series. We estimated the power spec-
trum by fast Fourier transform Welch’s periodogram
techniques. The spectrum was then divided into very
low frequency (VLF, 0-0.04 Hz), low frequency (LF,
0.04-0.15 Hz), and high frequency (HF, 0.15-0.4 Hz).
Since the signal length for calculating HRV features was
2 minutes, the VLF would be calculated with an incorrect
value and therefore not taken. The total power (TF) and
LF/HF ratio were also calculated. The LF and HF were
also represented as the normalized units (nLF, nHF) to
extract the sympathovagal component of the HRV better.

3) Non-linear Domain: We use the time-delay embedding
methods to capture the nonlinear properties of the PPI
time series. The nonlinear methods are introduced for
estimating the complexity of the time series and con-
structing the relation with mental states. The nonlinear
measurements include Poincaré plot [22] and Correlation
dimension [23].

The extracted HRV features ware listed in Table 1. They are
extracted from each session using 2 minutes windows with 30
seconds overlap, as suggested in [24].

TABLE |
TABLE OF EXTRACTED FEATURES
Feature Type Features p value
SDNN 0.0271*
NNS50 0.0300*
Time- PNN50 0.0060%*
Domain RMSSD 0.6114
SDSD 0.9311
TINN 0.2059
Trilndex 2.89 E-4*
Total Freq. (TF) 0.0514
High Freq. (HF) 0.0500%*
Frequency- normalized High Freq. (nHF) 0.0015*
Domain Low Freq. (LF) 0.0079*
normalized Low Freq. (nLF) 0.6054
LF/HF 0.0015%*
Poincaré plot (SD1) 0.6186
Nonlinear- Poincaré plot (SD2) 0.5988
Domain Poincaré plot (SD1/SD2) 0.6119
Correlation Dimension (CD) 2.90 E-15%

*: p-value < 0.05 (significant difference).

TABLE Il
SVM PARAMETERS

Parameter Setups

Kernel Linear
Regularization C (10e-3 ~ 300)
Class 2

Class weight (0: 0.67, 1: 0.33)

C. Classification

The extracted HRV features would then be used for MW
classification. Considering the physiological response was in-
herently participant independent, the participant-based feature
standardization was applied [25]. The detection of MW was
a two-class classification problem using the difficulty of the
N-back tasks as the ground truth. Since higher N would stim-
ulate a higher MW state, we considered the 2-, 3-back tasks as
the “high” MW states and the O-back task as the “low” MW
state. Support vector machine (SVM) [26] classifiers with a
linear kernel were used for MW classification. The linear SVM
adjustable regularization term C' was fine-tuned by grid-search
in the range [10e-3, 300]. The parameters of SVM are listed in
Table II. The single modality classifier was trained separately
for each channel (ECG, fingertip PPG, and wrist-worn PPG).

[ll. PRE-PROCESSING: OUTLIER REMOVAL MECHANISM

The IBI outlier is defined as an abnormal beat interval (ar-
tifact). Typical sources of outliers include additional or missed
beats that are caused by erroneous peak detection under motion.
Generally, detecting outlier is basically rely the value of IBI.
Some extreme IBI values will be regarded as outlier. In our
work, we compared the IBIs that retrieved from PPG to ECG,
as illustrated in Fig. 4. The long beat and the short beat can
be regarded as outliers. These IBI outliers frequently occur
when using wearable sensors such as PPG, which can contribute
to the decline in the performance of HRV-based applications.
In Fig. 5, we showed the HRV feature value calculated from
two IBI sequences retrieved from PPG and ECG. The blue
line represents the feature extracted from ECG’s IBIs (RRI),
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Fig. 5. Estimated Time-domain HRV features (SDNN and RMSSD)
from ECG and PPG signals.(Each data point is extracted from a
2-minutes length signal.).

while the orange line represents PPG’s IBIs (PPI), which are
accompanied with outliers. From Fig. 5, we observe that the
HRV feature value calculated from PPG has much difference
to the feature value calculated from ECG. It is because outliers
often occur in PPG signals, those outliers will have a dramatic
impact on HRV feature value. It infers that the removal of
outliers is critical for making the detection on wearable devices
robust. The traditional methods detect outliers by examining the
value changes in the IBI sequence. However, these numerical
methods are not suitable for all conditions. Threshold values and
parameters also need to be adjusted over time. In addition, it is
difficult to determine whether the detected outliers are genuine
outliers or just longer or shorter beat intervals. A way to catch
the outliers is from the waveform domain since erroneous beat
intervals are caused by incorrect peak detection of corrupted
waveforms.

In our work, we detect PPG valleys to obtain the IBI sequence,
we called it valley-to-valley interval(VVI). The PPG waveform
between valleys is a PPG pulse. Therefore, it motivates us
to detect outliers from PPG pulses. As shown in Fig. 6, if
the waveform of a PPG pulse between the detected valleys is
complete, the corresponding beat interval is considered to be a
correct IBI. On the contrary, if the waveform is incomplete and
distorted, the corresponding beat interval is considered an IBI
outlier.

Hence, the proposed outlier removing mechanism will calcu-
late PPG pulses characteristic or signal quality indices (SQIs).

is trained by the SQIs and outlier labels, or the outlier labels are
obtained from comparing the IBIs to synchronized ECG signals.
Finally, we removed those outliers based on model’s prediction.
The process flow of proposed outlier removing mechanism is
illustrated in Fig. 7.

A. Signal Quality Indices (SQI) of PPG Pulse

To determine whether the PPG pulse is corrupted enough to
induce the outlier in the IBI sequence, we have to evaluate the
waveform of the PPG pulses. There have been several metrics
used for assessing the PPG signal quality. For example, in [27]
the author used a series of rules to determine ECG/PPG signal
quality. Several metrics, such as HR, IBIs, and template match-
ing correlation, are checked. Since we aim to detect outliers
rather than determine signal quality in our work, some statistical
metrics from [28] are good enough to use. Those metrics are
Perfusion, Skewness, Kurtosis, and Entropy, which can also be
used to describe the PPG waveform feature. They are defined as
follows:

Per fusion = [(Ymax — Ymin)/ |Z|] x 100, (1)

where 7 is the statistical mean of the x signal (raw PPG signal),
and y is the filtered PPG signal.

1 & [ 1?
Skewness = N Z {xi — J} ,

i=1

@)

where i, and o are the empirical estimate of the mean and
standard deviation of x;, respectively, and N is the number of
samples in the PPG signal.

{ gl

n)? log, (x

Kurtosis =

3)

=l

Entropy = [n }2) . 4)

N

N

The features above statistically describe the waveform of PPG
for determining if the waveform is corrupted. In addition to
statistical methods, some template — based features [29] has
been used to assess the quality of the PPG signal. These methods
build a PPG pulse template for each subject and evaluate the
quality by comparing it with the template waveform. Dynamic
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time warping (DTW) and Pearson’s correlation coefficient are
applied to compare the template waveform similarity.

The other method to compare the similarity is using Pearson’s
correlation coefficient, which can be defined as follows:

Zfi1(xl - .Um)(yz - ,Uy)
\/Zf\;(% - Mz)g\/zﬁil(y — py)?

where x is the PPG signal to be compared, and y is the template
PPG waveform.

In addition to those features that assess the PPG signal quality,
we also include the information of consecutive IBIs, which is
inspired by the idea of the traditional filter — based outlier
detection method. We consider the difference between adjacent
IBIs, the ratio between IBIs, and the difference between the
median of nearby IBIs that is motivated by the Kubios filter,
which can be defined as follow:

!
Pearson'sr =

)

d_IBI(i) = IBI(i) — IBI (i —1), ©6)

r_IBI(i) = IBI(i)/IBI(i — 1), %

m_IBI(i) = IBI(i) — median [IBI (z - % it %)} ,
®)

where w is the window size for computing the median. The total
extracted features for assessing are listed in Table III.

B. ECG-Assisted Outlier Labeling

Next, before training a machine learning model to determine
outliers, we have to collect labels for training, knowing what

PPG pulse must have a corresponding label indicating whether
it is an outlier or not. Conventionally, many human resources
are required to obtain these labels from the enormous number of
PPG pulses, which is time-consuming and a waste of labor. In
addition to these drawbacks, the standards of different annota-
tors are inconsistent, and the distorted waveforms perceived by
humans do not necessarily lead to outliers in the IBI. Therefore,
we proposed the ECG-assisted method to label the outliers. We
can obtain two IBI sequences from ECG (RRI) and PPG (VVI)
by the simultaneously collected ECG signal. Since ECG is much
more stable than PPG, the points with large differences in RRI
and VVI can be considered as outliers, as shown in Fig. 8.
Before we used ECG as a reference, we used the method
from [27] to systematically check the signal quality of ECG.
The method from [27] is employed a series of rules to determine
the quality of ECG signals, which include: “HR between 40-180
bpm”, “All RR intervals are < 3s” and “Max RR interval/Min
RR interval < 2.2s5”. The ECG signal segments are recognized
as good quality if the salient feature (R peaks) can be detected.
Next, we extracted RRI from ECG and aligned it with the
VVI sequence. We perform shifting and comparing the Root
Mean Squared Error (RMSE) of the two sequences, and the
shifted amount corresponds to the minimum RMSE. After the
alignment, the second stage is comparing the RRI and VVI
values. If the difference is greater than a predefined threshold,
the beat interval in VVI is labeled as an outlier. If we encounter
the case of an additional or missing peak, the length of the
RRI and VVI sequence will be different. In this case, it is hard
to compare these two sequences to get outlier labels. Hence,
we will repeat beat interval alignment in the first stage after
every detected outlier. The two stages are repeated after all
beat intervals are compared. With the assistant of ECG signal,
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we can automatically obtain the label of outliers, which can
precisely label outliers and save much time. After we have the
label of outliers, we can train our outlier detection model from
the information of PPG pulses and corresponding outlier labels.

C. Outlier Detection Model - Extreme Gradient Boosting
(XGBoost)

After obtaining the PPG features and corresponding outlier
labels, we can train the classification model to detect outliers.
Among all the machine learning algorithms, gradient boosting
tree — based model [30] has been shown in many applications
in different domains. XGBoost [31] is an efficient and scalable
gradient boosting machine, which has won lots of machine
competitions in recent years [32]. It is an ensemble model
consisting of sets of classification and regression tree (CART).
While XGB is used for supervised learning problems, and we
use training data x; to predict a target variable y;, the model can
be described in the form:

K
gi=>_ fulw), [ € F . ©)
k=1

K is the total number of trees, f}, for the k™ tree is a function
in the functional space F, and F is the set of all possible CARTs.
In training, each of new — trained CART will try to complement
the so — far residual. Objective function optimized at (¢+1)®
CART is described:

n t
obj = > Uy, i)+ > Q(f), (10)
i=1 i=1
where /() denotes the training loss function, y; the is ground truth
and 3 is the prediction value at step ¢. () given by:

T
1
Qf)y =~T + §AZw§- an

Jj=1

is the regularization term, where T is the number of leaves
and w; is the score on the j™ leaf. When Eq. 10 is optimized,
Taylor’s expansion is used to use gradient descent for different
loss functions. Furthermore, feature selection is no need when
we use the XGBoost approach. During the training period of
XGBoost, good features would be chosen as a node in trees,
which means features not used are abandoned.

In this paper, we use the scikit — learn API for XGBoost
classification. The inputs of XGBoost have eleven features,
and the outputs are prediction results for outlier detection. The
performance will be shown in the next section.

D. Validation of the Pre-Processing Method

We validate the pre-processing technique in this subsection.
The purpose of outlier removal is to reduce the feature error and
gap between PPG and ECG. Hence, we evaluate the effectiveness
of different outlier removal methods by comparing the extracted
HRYV feature value between ECG and PPG. The absolute relative
error (ARE) [33] is used to calculate the feature error. We
calculate the error of each HRV feature for different outlier

TABLE IV
COMPARISON OF FEATURE ERROR BETWEEN DIFFERENT OUTLIER
REMOVAL METHODS

Do Quotient Kubious ] Outlier
Riction nothing | Filter [15] | Filter [16] | TrPOSed | 7 apel
Mean
ARE (%) 144.92 28.13 24.95 23.17 23.15
Compare to
Outlier Label +122% +4.98% +1.8% +0.05% -

removal methods to assess the effectiveness. ARE is defined
as:

ECG _ fPPG
ARE(i,j) = % x 100(%), (12)
i,
and meanARFE is defined as:
N M .
L - ARE(i,
meanARE = Lin ZJ\J[_; i ( J)- (13)

JEFC denotes subject j’s ith HRV feature extracted from

ECG, fF'9 denotes subject j’s i'" HRV feature extracted from
PPG, N is the HRV feature number and M is the subject number.

We compare the HRV features error in five cases. First, we
extract HRV features from the VVI without removing outlier (Do
nothing) and compute the error. Then we applied the quotient
filter [15] and Kubios filter [16] to detect and remove the outliers
of VVI and calculated the error of extracted HRV features,
respectively. The fourth case was applying the proposed outlier
removal method on VVI and calculating the extracted HRV
features error. Lastly, we removed the outlier based on the
outlier labels identified from the ECG and calculated the error
of extracted outlier, which was regarded as the minimum error
since all outliers were removed (Outlier label). The results is
listed in Table I'V.

We can observe that the feature error is significant without
removing the outlier points. After applying the filter-based ap-
proaches (quotient and Kubios) to remove outliers, the error of
the HRV feature values can be significantly reduced. However,
there is still a gap between that and the best-case scenario. The
proposed methods can achieve the slightest feature error with a
0.05% difference from the best case.

IV. POST-PROCESSING:UNCERTAINTY ESTIMATION

In the previous section, the outlier removal method is in-
troduced to remove the irregular beat intervals. However, the
removed VVIs imply data loss of those segments and have two
levels of impact. First, the extracted HRV features will have some
errors due to data loss. Second, there will be uncertainty in the
classification caused by the error of input features. Proposed
post-processing is designed to quantify the uncertainty brought
by those removed VVIs. A high uncertainty score will infer a
higher probability of causing the wrong detection result. This
estimation process is illustrated in Fig. 9: We will first estimate
the HRV feature error causing by missing IBIs. Next, according
to the estimated feature error, we will analyze the influence on
classification and estimate the probability of processed signal
wrong classifying.
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Fig. 9. Flowchart of post-process mechanism. It includes HRV feature error estimation and uncertainty estimation of misclassification.
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Fig. 10.  Simulation result of feature error with different ratios of missing IBIs. (a) Time-domain, (b) Frequency-domain, and (c) Nonlinear-domain.

A. Error Estimation of HRV Features

To estimate the feature error, we perform an experiment that
randomly removes certain proportions of the IBI sequence and
compares the features extracted with those from the complete
IBI. According to the simulation result in Fig. 10, we can observe
the trend of the feature error of each HRV feature to missing VVI
ratio. The growth of each feature error increases linearly as the
portion of missing segments increase, but with different slopes.
Our observation is consistent with the research in [34]. Hence,
once we got the missing ratio of processed IBIs, we estimate
this error by the regression model. The error of each feature can
be estimated for a given missing ratio of IBI.

B. Influence of Feature Error on SVM Classification

The linear SVM [26] is used for mental workload classifi-
cation in this paper. The mathematical properties of the linear
SVM allow us to explore the influence of feature errors on clas-
sification. In the testing phase, the binary classification function
of linear SVM is defined as:

y:f(x):sign(v_&-?—b), (14)

where W (v_v>eR”) denotes the weight of each feature, which is
also the normal vector to the hyperplane, X (XeR") denotes
the input vector, H—v_l:m determines the offset of the hyperplane, and
y is either 1 or —1, each indicating the class where X belongs
to.

If the input feature vector comes with a known error A?,
the input vector becomes X' = X+AX. The uncertainty of
features makes data points shift [35]. The error of input feature

Outlier Removal: Feature Extraction:

X

/\V/\/«‘f‘ T+Ax =

x/\/\/i\/* - Z4+ix] =

(a)

PPI

(b)

PPI

Fig. 11. Influence of feature error on classification: (a) smaller feature
error and (b) bigger feature error.

will affect the classification if:
sign (v_v> . (?—FA?) — b) # sign (W X - b) ,

which means that the data point across the hyperplane and the
classification result will be wrong.

Therefore, if we can estimate the feature error, we can evaluate
whether the error will affect the classification. Since the feature
error is a scalar, instead of a vector, the uncertainty of the
datapoint can be approximated as a circular region with a radius
of [AX].

As the outlier removal system removes more outliers, the
error of the extracted features becomes larger. The larger feature
error increases the uncertainty of the datapoint. We can expect
that the radius of uncertainty region in SVM increases as well,
which will raise the risk of misclassification, as shownin Fig. 11.

15)
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Fig. 12.  Uncertainty estimation model of linear SVM.

The larger radius of the uncertainty region will lead to a higher
risk of misclassification. It makes the feature error a factor
that can be used to evaluate the risk of misclassification. In
addition, another factor to consider is the distance from the data
point to the decision boundary, denoted by D in Fig. 11. The
closer the data point is to the boundary, the greater the risk
of misclassification. Therefore, to estimate the probability of
misclassification in linear SVM, we will consider two factors, the
feature error can be estimated using regression, and the distance
from the boundary can be obtained from the trained parameters
in SVM.

C. Uncertainty Estimation of Wrong Classification

This section aims to quantify the probability of misclassifica-
tion by a simple model with the two factors that affect the SVM
classification. The first is the uncertainty of the input feature,
which is the feature error that can be estimated from the ratio of
removed beats. It is defined as:

R:HEZ

F 16)

where ||E><|| is the feature error obtained by the regression
model. The other is the distance from the data point to the
decision boundary, which can be regarded as the confidence
level of the input data, defined as:

b WX +b|
KN

where W is the wei ght of the linear SVM, X isthe input vector,
HRYV features, and the b is the interception of the linear SVM.

The misclassification occurs when the datapoint crosses the
decision boundary under the influence of feature error and falls
in the arc segment area, as illustrated as solid arc line in Fig. 12.
Thus, the probability of misclassification is modeled as the ratio
of the arc segment to the circular segment. Those feature points
close to the decision boundary, which is the case of small D, are
more likely to cross the decision boundary, causing misclassifi-
cation. Moreover, for those cases with significant feature error
R, misclassification is more likely to happen. The calculation of
uncertainty level can be formulated as below:

a7

1

1 D
UncertaintyLevel = — cos™ ™ —. (18)
T R

D. Validation of Post-Processing Method

To validate whether the model can correctly estimate the
probability of misclassification, we experiment to test the corre-
lation between the model’s result and the actual result. The PPG
data pool contains data with different rates of VVI removed

I correctClassified data
[0 Wrong Classified data

Number of Data
Wrong Classification
Ratio in the Bin (%)

10 20 30 40 50
Estimated Probability of Wrong Classification (%)

Fig. 13.  Validation of the uncertainty estimation model.

depending on the degree of contamination of the movement.
The first step is to divide the data pool into bins with varying
misclassification probabilities, i.e., the first bin is for data with
0% misclassification probability, and the last bin is for data with
50% misclassification probability.

The second step is to perform the mental workload classifica-
tion on each bin’s data separately. The purpose is to check the
error rate in each bin. Ideally, the bin with a higher estimated
misclassification probability will have a higher error rate. The
results are shown in Fig. 13. The x-axis is the estimated proba-
bility of the proposed estimation model (uncertainty level), and
the y-axis on the left side represents the data number in each
bin. The blue bars represent correctly classified data, and the
orange bar represents misclassified data. The red number and the
y-axis on the right side represent the error rate in each bin. The
error rate and the estimated uncertainty level have a Pearson’s
r correlation coefficient of 0.96, indicating that the uncertainty
estimation model was validated.

V. EVALUATION ON OPEN DATABASE

The experiment result of overall system is presented in this
section. First, we compare the MW assessment system with
and without the pre- and post- processing blocks. Next, we
concatenate these two techniques into typical MW assessment
processing flow, which was illustrated in Fig. 2(b), to show the
improvement of overall accuracy.

We have used CLAS [36] and MAUS [37] dataset for our
experiment. CLAS dataset provides ECG, GSR, and ear-lobe
PPG. The MW level was elicited through a series of interactive
tasks, such as Math and Logic problem. On the other hand,
MAUS dataset provides ECG, fingertip-PPG, wrist-PPG, and
GSR signals of 22 subjects. The MW level is induced by
performing the N-back task. We choose to use these datasets
because it contains partially-contaminated PPG, which has a
different outlier ratio in VVI over subjects. The PPG signals
from these two datasets have room for improvement with some
processing techniques. Hence, they fit into our scenario, and we
can show how much improvement by the proposed technique.
Furthermore, these datasets contain synchronized ECG signals
that can be used to find the limits of improvement that the
processing technology can make. With regards to this, we chose
these two datasets for the evaluation of the proposed technique.
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TABLE V
COMPARISON RESULT OF THE FRAMEWORKS WITH AND WITHOUT THE PRE- AND POST- PROCESSING BLOCKS
Modality | Accuracy(%) | Fl-score(%) | Rejection Rate(%) Sample Size
MW System PPG 64.7 £10.0 66.9 +8.0 -
MW System
. PPG 70.7 £6.1 73.2 £5.2 -
+ Outlier Removal 155
CLAS [37] MW System (31 Subjects)
+ Outlier Removal PPG 78.3 £4.6 79.9 +£3.8 31.6
+ Uncertainty Estimation
ECG 81.3 £1.6 82.1 1.4 -
MW System PPG 66.7 £11.3 67.5 £11.9 -
MW System PPG | 6944110 | 69.9 £10.7 -
+ Outlier Removal 342
MAUS [38] MW System (19 Subjects)
+ Outlier Removal PPG 74.2 £10.8 74.5 £10.4 28.4
+ Uncertainty Estimation
ECG 753 £8.9 75.4 £8.9 -
die TABLE VI
EXPERIMENT SETUP
074 o= ]
g o 2 Pr(l;cl(e)scslzng Parameter Setup
= | 0 0
& 070 2 Pre-procgssmg: Classifier XGBoost
$ ) Outlier Feature Number 11
I 068 5 Removal Class 2 (non-outlier/outlier)
Sl . Post-processing:
Uncertainty Threshold 0.458
0.64 Estimation
0.500 0.475 0.450 0.425 0.400 0375 0350 0.325 0.300 Classifier Linear SVM
Wrong Classification Probability (%) - Threshold Mental Feature Number 7
Fig. 14. Threshold det ini f th taint timati ggtikclt(i)gg Class 2 (Low/High MW)
g. 14. reshold determining of the uncertainty estimation. Validation Lcave-one-subject-out

Before the comparison, we determine the threshold of the
uncertainty model for rejecting the high probability of misclas-
sification data, we test the system under different thresholds.
The threshold ranges from 0.5 to 0.3. A threshold of 0.5 means
rejecting data with a probability of misclassification greater or
equal to 0.5, which is the maximum value of the uncertainty
estimation model. As the threshold moves from 0.5 to 0.3,
indicating we are rejecting more data. The threshold of 0.3 means
we reject data with a misclassification probability greater or
equal to 0.3. As a result, we are rejecting the data of probability
range from 0.3 to 0.5. The result is shown in Fig. 14.

The x-axis is the threshold of wrong classification probability
from the uncertainty estimation model, the y-axis on the left side
is the average F1-score of testing, and the y-axis on the right side
is the ratio of remaining data (for prediction instead of rejection).
The red dash line represents the f1-score of the ECG. We lower
the threshold from 0.5 to 0.3, meaning we reject the data from the
higher to a lower probability of misclassification. The remaining
data decreases as the threshold decreases. As data with a high
probability of misclassification are rejected, the F1-score of MW
prediction increases. The F1-score of PPG approaches the ECG
as the threshold decreases. After a threshold of 0.4, there is a
dramatic drop in the Fl-score, suggesting that some correctly
classified data are rejected. Therefore, we select a threshold of
0.458 considering the performance and remaining data amount.
The experiment setup is listed in Table VI.

Next, we compare the mental workload detection system with
and without the pre- and post- processing blocks. We treated
the performance of the ECG-based system as the performance
bound of our system. Hence, we also listed the performance
of the ECG-based system in Table VI to see how much the
proposed technique can get to the performance bound. We have
examined the accuracy of the proposed system in CLAS and
MAUS datasets. The result is listed in Table V. From the exper-
iment result, we can see that each block makes a performance
improvement. The outlier removal mechanism make smaller fea-
ture error, hence making MW assessment more accurate. After
removing outlier, some uncertainty is generated, proposed post-
processing block: uncertainty estimation can be used to evaluate
the probability of misclassification. For those misclassify prob-
ability higher than 0.458 will be discarded. In this case, no MW
assessment result will be reported. The rejection rate indicates
the percentage of data that not reporting MW level. It is common
to reject PPG if the signal quality is not qualified [27]-[29],
[38]. Signal quality assessment methods from [27]-[29], [38] are
used to discard poor quality signals for acquiring accurate vital
measurement. However, there is still no research investigating
how signal quality affects classification-like measurement, such
as MW assessment. To the best of our knowledge, we are the first
to bridge the gap of this problem. We developed a quantitative
method, uncertainty estimation, to quantify the probability of
noisy PPG signal affecting classification results.
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TABLE VII
COMPARISON RESULT BETWEEN PROPOSED SYSTEM AND RELATED WORK
Articles Devices Features Methods Task Classes | Accuracy | Participants
Cinaz ECG ECG (HRV) 1121]\?1/\?’ Office- 5 o .
et al. (2011) [6] Chest Belt GSR SVM’ work ¢
Dibyanshu Samsung PPG (HRV) .. Addition
etal. 2019) [11] | Gear S2 | Breath Pattern | Decision Tree Task 2 8% .
Ekiz Samsung . .
et al. (2019) [12] Gear S2 PPG (HRV) LSTM Daily Life 2 70% 17
Schaule Mircrosoft PPG (HRV) SVM,
etal. (2018) [13] | Band 2 GSR Random Forest | \-Pack 2 66% 10
Our Work . . Math
(CLAS) Shimmer3 PPG (HRV) Linear SVM problem 2 78% 31
Our Work PixArt .
(MAUS) PPG watch PPG (HRV) Linear SVM N-back 2 74% 19

By using the proposed pre- and post- processing techniques,
the PPG-based MW assessment system can achieve higher ac-
curacy and lower variance among users. For CLAS dataset, we
improve the typical MW system accuracy with 13.6% and lower-
ing the variance with 5.4%. For the MAUS dataset, we improve
the typical MW system accuracy with 7.5% and lowering the
variance with 0.5%. The reason that we improve the accuracy so
much is we rejecting around 30% of data. When we are rejecting
probably misclassified data, remain data has larger portion to
be correctly classified, and the reported result is more reliable.
Lastly, after removing outlier from IBIs and rejecting around
30% high probability misclassify data, proposed PPG-based
MW system achive comparable performance to ECG-based MW
system.

Lastly, as illustrated in Table VII, we made a table to compare
the proposed system to related work. All of these works use
different devices, features, and methods to assess MW under
different tasks. It is hard to compare between these works under
different settings, methods, and datasets. However, the proposed
system that only uses a single modality PPG can achieve rela-
tively high accuracy.

VI. CONCLUSION

This paper presents a robust mental workload detection sys-
tem based on PPG signal. Two enhancements to the conven-
tional processing flow are proposed, the first part identifies
and removes outliers in VVI by the ML-based method, which
minimizes the HRV feature errors and improves the accuracy
and F1-score by 3%. Next, processed data with a high probabil-
ity of misclassification are rejected to reduce the false alarm,
which further improves the accuracy and Fl-scores by 5%.
The proposed system are validated on two open datasets with
similar conclusion, which achieves comparable performance to
ECG-based MW system.
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